В начале XIX в. в Швеции были найдены новые богатые месторождения железной руды. Одна за другой сооружались доменные печи. Но что примечательно: при одинаковых условиях некоторые из них давали железо удивительной ковкости, в то время как из других получался более хрупкий металл. После многих безуспешных попыток наладить процесс выплавки высококачественного металла в «плохих» домнах металлурги обратились за помощью к химикам, и в 1830 г. Нильсу Сефстрему удалось выделить из шлака «лучших» домен неизвестный черный порошок. Сефстрем сделал вывод, что изумительную ковкость металлу придает присутствие в руде какого-то неизвестного элемента, содержащегося в черном порошке.

Этот новый элемент Сефстрем назвал ванадием в честь легендарной Ванадис – богини красоты древних скандинавов.

Открытие нового элемента всегда было большой честью для ученого. Поэтому можно представить себе огорчение мексиканского минералога Андреса Мануэля дель Рио, который еще в 1801 г. обнаружил в свинцовой руде никогда не встречавшийся прежде элемент и назвал его эритронием. Но, усомнившись в собственных выводах, дель Рио отказался от своего открытия, решив, что встретился с недавно открытым хромом.

Еще большее разочарование постигло блестящего немецкого химика Фридриха Вёлера. В те же годы, что и Сефстрему, ему довелось исследовать железные руды, привезенные из Мексики Л. Гумбольдтом. Те самые, что исследовал дель Рио. Вёлер тоже нашел в них что-то необычное, но его исследования прервала болезнь. Когда он возобновил работу, было уже поздно – Сефстрем обнародовал свое открытие. Свойства нового элемента совпадали с теми, что были занесены в один из лабораторных журналов Вёлера.

И только в 1869 г., спустя 39 лет после открытия Сефстрема, элемент №23 впервые был выделен в относительно чистом виде. Английский химик Г. Роско, действуя водородом на хлористый ванадий, получил элементарный ванадий чистотой около 96%.

В чистом виде ванадий – ковкий металл светло-серого цвета. Он почти в полтора раза легче железа, плавится при температуре 1900±25°C, а температура его кипения 3400°C. При комнатной температуре в сухом воздухе он довольно пассивен химически, но при высоких температурах легко соединяется с кислородом, азотом и другими элементами.

В соединениях ванадий проявляет четыре валентности. Известны соединения двух-, трех-, четырех- и пятивалентного ванадия.

В основную химическую промышленность ванадий пришел не сразу. Его служба человечеству началась в производстве цветного стекла, красок и керамики. Изделия из фарфора и продукцию гончарных мастеров с помощью соединений ванадия покрывали золотистой глазурью, а стекло окрашивали солями ванадия в голубой или зеленый цвет. В красильном деле ванадий появился вскоре после опубликования в 1842 г. сообщения выдающегося русского химика Н.Н. Зинина о получении им анилина из нитробензола. Реакция Зинина открывала новые возможности для развития производства синтетических красителей. Соединения ванадия нашли применение в этой отрасли химии и принесли ей значительную пользу. Ведь достаточно всего одной весовой части V2O5, чтобы перевести 200 тыс. весовых частей бесцветной соли анилина в красящее вещество – черный анилин. Столь же эффективным оказалось применение соединений ванадия в индиговом крашении. Так элемент №23 пришел в ситцепечатание, в производство цветных хлопчатобумажных и шелковых тканей.

Промышленность нуждалась в ванадии и его соединениях, но руд, богатых этим элементом, было немного. Инженеры французской сталелитейной фирмы «Крезо», видимо, обратили внимание на то, что первые соединения ванадия Сефстрем получил не из руды, а из металлургических шлаков, и в 1882 г. наладили их производство на той же основе. На протяжении 10 лет завод «Крезо» ежегодно выбрасывал на мировой рынок по 60 т пятиокиси ванадия V2O5. Однако вскоре спрос на соединения ванадия для получения черного анилина резко упал, и производство их значительно сократилось.

Но в начале первой мировой войны химикам вновь пришлось обратиться к элементу №23. В эти годы сражающимся странам потребовались громадные количества серной кислоты. Ведь без нее невозможно получить нитроклетчатку основу боевых порохов. Известно, что серная кислота получается окислением сернистого ангидрида SO2 серный ангидрид SO3 с последующим присоединением воды. Однако SO2 непосредственно с кислородом реагирует крайне медленно. Окисление сернистого ангидрида может происходить при восстановлении двуокиси азота (на этой реакции основан нитрозный способ производства серной кислоты), но более чистая и концентрированная кислота получается, если реакцию окисления SO2 в SO3, проводить в присутствии некоторых твердых катализаторов (контактный метод производства).

Первым катализатором сернокислотного контактного производства была дорогостоящая платина. Ее, естественно, не хватало, требовались заменители. Ими оказались пятиокись ванадия V2O5 и некоторые соли ванадиевых кислот, например Ag3VO4. Они почти с таким же успехом, как и платина, ускоряют окисление SO2, в SO3, но обходятся значительно дешевле, да и требуется их меньше. И главное, они не боятся контактных ядов, выводящих из строя платиновые катализаторы.

Катализаторы на основе ванадия играют большую роль и в современной химии. Их по-прежнему можно встретить в большинстве цехов по производству серной кислоты, не обходятся без них и такие важные процессы, как крекинг нефти, получение уксусной кислоты путем окисления спирта многие другие.

Цены на ванадий и ванадиевый прокат можно посмотреть в разделе Цены нашего сайта.